Theoretical Modeling and Analysis of L- and P-band Radar Backscatter Sensitivity to Soil Active Layer Dielectric Variations
نویسندگان
چکیده
Freeze-thaw (FT) and moisture dynamics within the soil active layer are critical elements of boreal, arctic and alpine ecosystems, and environmental change assessments. We evaluated the potential for detecting dielectric changes within different soil layers using combined Land P-band radar remote sensing as a prerequisite for detecting FT and moisture profile changes within the soil active layer. A two-layer scattering model was developed and validated for simulating radar responses from vertically inhomogeneous soil. The model simulations indicated that inhomogeneity in the soil dielectric profile contributes to both Land P-band backscatter, but with greater P-band sensitivity at depth. The difference in Land P-band responses to soil dielectric profile inhomogeneity appears suitable for detecting associated changes in soil active layer conditions. Additional evaluation using collocated airborne radar (AIRSAR) observations and in situ soil moisture measurements over alpine tundra indicates that combined Land P-band SAR observations are sensitive to soil dielectric profile heterogeneity associated with variations in soil moisture and FT conditions.
منابع مشابه
Electromagnetic Scattering By Random Rough Surfaces
The problem of electromagnetic scattering from random rough surfaces has been the subject of intense investigation over the past several decades for its applications in a number of important remote sensing problems. With the advent of the polarimetric synthetic aperture radar (SAR), radar remote sensing has attained significant prominence in the past decade. SAR systems are capable of producing...
متن کاملDownscaling of coarse-resolution radiometer brightness temperature by high-resolution radar backscatter
Given the importance of soil moisture for hydrological applications, such as weather and flood forecasting, passive microwave remote sensing is a promising approach for retrieving soil moisture due to its high sensitivity to near-surface soil moisture, applicability to all weather conditions, direct relationship with the soil dielectric constant, and reduced effects from vegetation and roughnes...
متن کاملA Change Detection Algorithm for Retrieving High-resolution Surface Soil Moisture from Smap L-band Radar and Radiometer Observations
Soil moisture is a critical hydrological variable that links the terrestrial water, energy and carbon cycles. Global and regional observations of soil moisture are needed to estimate the water and energy fluxes at the land surface, to quantify the net carbon flux in boreal landscapes, to enhance weather and climate forecast skill and to develop improved flood prediction and drought monitoring c...
متن کاملA C-band Backscatter Model for Lake Ice in Alaska
ERS-1 SAR imagery of lake ice growing on shallow lundra lakes in northern Alaska shows interesting radar backscatter variations. Based on the analysis of ice cores from these lakes, a multi-layer backscatter model comprised of the following elements has been developed: I) specular air-ice, ice-water and ice-frown soil boundaries; 2) an ice layer of variable thickness; 3) ice sub-layers with air...
متن کاملMonitoring of rain water storage in forests with satellite radar
The sensitivity of radar backscatter to the amount of intercepted rain in temperate deciduous forests is analysed to determine the feasibility of retrieval of this parameter from satellite radar data. A backscatter model is validated with X-band radar measurements of a single tree exposed to rain. A good agreement between simulation and measurements is observed and this demonstrates the ability...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015